Enhanced Multi-Protocol Analysis via Intelligent Supervised Embedding (EMPrAvISE): Detecting Prostate Cancer on Multi-Parametric MRI.
نویسندگان
چکیده
Currently, there is significant interest in developing methods for quantitative integration of multi-parametric (structural, functional) imaging data with the objective of building automated meta-classifiers to improve disease detection, diagnosis, and prognosis. Such techniques are required to address the differences in dimensionalities and scales of individual protocols, while deriving an integrated multi-parametric data representation which best captures all disease-pertinent information available. In this paper, we present a scheme called Enhanced Multi-Protocol Analysis via Intelligent Supervised Embedding (EMPrAvISE); a powerful, generalizable framework applicable to a variety of domains for multi-parametric data representation and fusion. Our scheme utilizes an ensemble of embeddings (via dimensionality reduction, DR); thereby exploiting the variance amongst multiple uncorrelated embeddings in a manner similar to ensemble classifier schemes (e.g. Bagging, Boosting). We apply this framework to the problem of prostate cancer (CaP) detection on 12 3 Tesla pre-operative in vivo multi-parametric (T2-weighted, Dynamic Contrast Enhanced, and Diffusion-weighted) magnetic resonance imaging (MRI) studies, in turn comprising a total of 39 2D planar MR images. We first align the different imaging protocols via automated image registration, followed by quantification of image attributes from individual protocols. Multiple embeddings are generated from the resultant high-dimensional feature space which are then combined intelligently to yield a single stable solution. Our scheme is employed in conjunction with graph embedding (for DR) and probabilistic boosting trees (PBTs) to detect CaP on multi-parametric MRI. Finally, a probabilistic pairwise Markov Random Field algorithm is used to apply spatial constraints to the result of the PBT classifier, yielding a per-voxel classification of CaP presence. Per-voxel evaluation of detection results against ground truth for CaP extent on MRI (obtained by spatially registering pre-operative MRI with available whole-mount histological specimens) reveals that EMPrAvISE yields a statistically significant improvement (AUC=0.77) over classifiers constructed from individual protocols (AUC=0.62, 0.62, 0.65, for T2w, DCE, DWI respectively) as well as one trained using multi-parametric feature concatenation (AUC=0.67).
منابع مشابه
Semi Supervised Multi Kernel (SeSMiK) Graph Embedding: Identifying Aggressive Prostate Cancer via Magnetic Resonance Imaging and Spectroscopy
With the wide array of multi scale, multi-modal data now available for disease characterization, the major challenge in integrated disease diagnostics is to able to represent the different data streams in a common framework while overcoming differences in scale and dimensionality. This common knowledge representation framework is an important pre-requisite to develop integrated meta-classifiers...
متن کاملMulti-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS
Even though 1 in 6 men in the US, in their lifetime are expected to be diagnosed with prostate cancer (CaP), only 1 in 37 is expected to die on account of it. Consequently, among many men diagnosed with CaP, there has been a recent trend to resort to active surveillance (wait and watch) if diagnosed with a lower Gleason score on biopsy, as opposed to seeking immediate treatment. Some researcher...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملEvaluation of the accuracy of dynamic contrast enhanced MRI in the diagnosis of invasive prostate neoplasm using pathological findings
Background: Prostate cancer is the most common malignancy in men and the second leading cause of death in all countries of the world. The exact mechanism of prostate cancer is not known. On the other hand, early detection of prostate cancer can lead to a complete cure. Several clinical experiments including Digital Rectum Examination (DRE), biochemistry such as Prostate Specific Antigen (PSA), ...
متن کاملIntegrating Structural and Functional Imaging for Computer Assisted Detection of Prostate Cancer on Multi-Protocol In Vivo 3 Tesla MRI.
Screening and detection of prostate cancer (CaP) currently lacks an image-based protocol which is reflected in the high false negative rates currently associated with blinded sextant biopsies. Multi-protocol magnetic resonance imaging (MRI) offers high resolution functional and structural data about internal body structures (such as the prostate). In this paper we present a novel comprehensive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of SPIE--the International Society for Optical Engineering
دوره 7963 شماره
صفحات -
تاریخ انتشار 2011